ANTI-MRSA ACTIVITY OF 1-(4-CHLORO-PHENYL)-3-DICHLOROPHENYL- AND 3-TRICHLOROPHENYL-2-(1*H*-IMIDAZOL-1-YL)-2-PROPEN-1-ONE DERIVATIVES

SHOZO MIURA, YOSHIYA IWASAKI[†] and Kuniaki Tatsuta*

Graduate School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan [†]Shikoku Chemicals Co., Kitajimacho, Itanogun, Tokushima 771-02, Japan

(Received for publication May 9, 1994)

Substituted 1-(4-chlorophenyl)-2-(1*H*-imidazol-1yl)-2-propen-1-one derivatives (1) including the 3-(2,4-dichlorophenyl) analog (1b) have been synthesized in our laboratories and found to show significant activities against Gram positive bacteria and fungi¹⁾. Recently, we synthesized a phenylpyrrole antibiotic, neopyrrolomycin (2) and its less chlorinated analogs, and clarified the significance of the dichlorophenyl or trichlorophenyl groups for biological activity including activity against methicillin-resistant *Staphylococcus aureus* species (MRSA)^{2~4)}. This has renewed interest in the synthesis and biological evaluation of several chlorinated phenyl analogs $(1a \sim 1f)$ of 1, where R at the C-3 position is dichlorophenyl or trichlorophenyl groups.

Herein we report the synthesis and biological activity of the analogs $(1a \sim 1f)$ especially against MRSA.

A typical synthetic procedure is as follows¹⁾.

To a hot solution of 2,3-dichlorobenzaldehyde (0.18 g, 1.03 mmol) in dry benzene were added piperidine (0.03 ml), acetic acid (0.012 ml) and then 1-(4-chlorophenyl)-2-(1*H*-imidazol-1-yl)ethanone (**3**: 0.2 g, 0.91 mmol), which was prepared as previously reported (mp 161.5°C)¹⁾. The resulting solution was refluxed with Dean-Stark trapping for 2 hours and evaporated to a residue, which was chromatographed on silica gel column with hexane - EtOAc (2:1) to give, after recrystallization from toluene, colorless crystals of **1a** (0.63 g) in 99%

	R	Yield (%)	MP (°C)	¹ H NMR (CDCl ₃ ; δ ppm)
la		99	133~134	7.76 7.56, 7.48, 7.45, 7.45, 7.44, 7.44, 7.13, 7.06, 6.87, 6.61
1b	ci 	91	134	7.73, 7.58~7.38, 7.15, 7.08, 6.88, 6.55
1c	ci - Ci-ci	86	103.5~104	7.66, 7.46, 7.36, 7.33, 7.26, 7.09, 6.89, 6.65
1d		93	111~111.5	7.66, 7.46, 7.45, 7.36, 7.27, 6.89, 6.80
le		89	150~150.5	7.74, 7.48, 7.43, 7.16, 6.87, 6.60
1f		91	146.5~147.5	7.88, 7.47, 7.42, 7.36, 7.29, 7.06, 7.00, 6.76

Table 1. Melting points and ¹H NMR spectral data of 2-propen-1-one derivatives $(1a \sim 1f)$.

	MIC (µg/ml)							
lest organism	1a	1b	lc	1d	1e	1f		
Staphylococcus aureus FDA209P	1.56	1.56	1.56	0.78	0.78	6.25		
S. aureus Smith	1.56	1.56	3.12	1.56	0.78	6.25		
Methicillin-resistant S. aureus No. 5	3.12	1.56	3.12	3.12	0.78	12.5		
Methicillin-resistant S. aureus No. 17	3.12	1.56	1.56	3.12	1.56	12.5		
Micrococcus luteus FDA16	3.12	0.78	1.56	1.56	1.56	0.78		
Escherichia coli NIHJ	> 50	> 50	1.56	25	>100	>100		
Candida pseudotropicalis F-2	3.12	1.56	< 0.78	1.56	3.12	> 50		
C. albicans 3147	25	12.5	12.5	12.5	> 50	> 50		
Cryptococcus neoformans F-10	3.12	0.78	0.78	3.12	3.12	3.12		
Trichophyton asteroides 429	3.12	1.56	12.5	1.56	3.12	25		

Table 2. Antibacterial and antifungal activities of 2-propen-1-one derivatives $(1a \sim 1f)^{a}$.

^a MIC values were determined by agar dilution method using Mueller-Hinton agar for antibacterial tests with incubation at 37°C for 18 hours and a nutrient agar and 1% glucose for antifungal tests with incubation at 27°C for 42 hours.

yield: mp $133 \sim 134^{\circ}$ C. The *E*-configuration was deduced from our previously reported X-ray crystallographic analysis of 1^{1} .

Several chlorinated benzaldehydes (2,4-dichloro-, 3,4-dichloro-, 3,5-dichloro-, 2,3,5-trichloro- and 2,3,6-trichloro-benzaldehydes) were used for the aforesaid reaction in place of 2,3-dichlorobenzaldehyde to give the corresponding 2-propen-1-one derivatives ($1a \sim 1f$) in high yields as shown in Table 1.

The biological activities of the compounds $(1a \sim 1f)$ against Gram-positive bacteria and fungi are shown in Table 2. All compounds except the 2,3,6-trichlorophenyl derivative (1f) exhibited similar good activity even against MRSA.

Now that 3-dichlorophenyl- and 3-trichlorophenyl-2-propen-1-one derivatives $(1a \sim 1f)$ have been readily synthesized and shown to have good activity, the industrial and clinical investigations are in due course.

Acknowledgments

We are grateful to the Institute of Microbial Chemistry, Shikoku Chemicals Co. and Yamanouchi Pharmaceutical Co. Ltd. for their generous support of our program.

References

- IWASAKI, Y.; T. FUJITA, H. YABE, H. HIRAO, K. KITAGAWA, S. FUTAKI, T. INOUE & T. MATSUZAKI: Synthesis and antifungal activity of a series of novel 2-propen-1-one. Yakugaku Zasshi 108: 942~950, 1988
- TATSUTA, K. & M. ITOH: Total synthesis of chlorinated phenylpyrrole antibiotics, (+)- and (-)-neopyrrolomycins. Tetrahedron Lett. 34: 8443 ~ 8444, 1993
- TATSUTA, K. & M. ITOH: Synthesis and biological evaluation of neopyrrolomycin analogs. J. Antibiotics 47: 262~265, 1994
- TATSUTA, K. & M. ITOH: Synthesis and antibacterial activities of less chlorinated analogs of neopyrrolomycin. J. Antibiotics 47: 602~605, 1994